Emergence in France of *Pseudomonas syringae pv. actinidiae* (Takikawa et al., 1989).

Carène Rivoal1, Corinne Audusseau1, Sandrine Paillard1, Christelle François1, Françoise Poliakoff1.

1French Agency Health Safety (ANSES) Plant Health Laboratory, 7 rue Jean Dümérais 49044 Angers cedex 01.

Pseudomonas syringae pv. actinidiae (Psa) is the **causal agent of bacterial canker of kiwifruit**. The symptoms are characterized by cankers on leaders and trunks, shoot blight and leaf spot with halos. The Plant Health Laboratory detected and identified this emerging bacterium on *Actinidia chinensis* (yellow fleshes) in July 2010. Since, Psa is causing **severe damage in France on Actinidia chinensis and Actinidia delicosa** (green fleshes). Optimal range of temperatures for growth of Psa is 10-20°C, no symptom is observed above 25°C.

Present distribution of Psa:
- 1984: **Japan** (Takikawa et al., 1989; Serizawa et al., 1989),
- 1992: **Korea** (Koh & Lee, 1994) and **Italy** (Scortichini, 1994) where outbreaks had been eradicated,
- 2007: **Again in Italy** (Balestra, 2009),
- 2010: **France** (OEPP, 2010), **Portugal** (Balestra, 2010), **New Zealand** (2010, MAF Biosecurity Website),
- 2011: **Chile**, **Australia**, **Switzerland**, **Spain** and **Turkey** (OEPP).

Over the past 2 years, areas of Kiwifruit orchard increased in South of France, they represent nearly 4200 ha and 70 000 tons of fruits (FAOSTAT, 2009), 2/3 of this production is exported. France is the second European producer behind Italy.

METHODS AND RESULTS

→ Detection by **isolation on King’s medium B** (KB-King et al., 1954) from leaf spots and infected canes.

→ Identification with **biochemical and molecular tests** to distinguish Psa from other bacterial species and from other *P. syringae pathovars* (collection of 130 French isolates of Psa in 2011).

- Psa is a Gram negative bacteria, non fluorescent on KB, induces a HR, do not have a cytochrome c oxidase, an arginine dehydrolyase or urease activity, do not hydrolyse esculin, starch or gelatin. The use of **M2 medium** (Luizetti & pers.comm) could differentiate the 2008 Italian isolates from Japanese ones. Difficulties of recovery are mainly explained by the presence of saprophytic organisms and high temperatures.

- Amplifying total DNA of these strains, the primers PsaF1/R2 (Rees et al., 2010) resulted in a 280 bp fragment. A study on specificity with reference strains showed cross reactions of PsaF1/R2 primers with *P. syringae pv. avellaneae*. The recent duplex PCR (Koh6KmNov primers with AvDdxp-K/F primers) published by Gallelli et al. (2011) could be an alternative, currently being evaluated by Plant Health Laboratory.

→ **Biomolecular patterns of French isolates of Psa**

- **Effector gene hopA1**: presence in Psa strains isolated in France in 2010 and in Italy strains after 2008 (Vanneste J. et al., 2011).

- **cts haplotype**: 2010 French isolates showed same cts haplotype than 2008 Italian ones (cts haplotype I). The other cts haplotype A is mainly observed on Asian strains and on 1992 Italian ones (Vanneste J. et al., 2010).

- **BOX PCR electrophoretic profile**: the results showed correlation with the 2 groups of cts haplotype.

Although this is not a sufficient evidence to prove the origin of the pathogen in France, it suggests a connection between the Italian and the subsequent French outbreaks. After one year of survey, it appears that more than one profile may be present in France.

PERSPECTIVES

Variability at the molecular level, as illustrated by several fingerprints, will be used for further epidemiological studies and development of molecular typing tools and diagnostic methods.