Multilocus variable number of tandem repeats analysis reveals multiple introductions of Xanthomonas arboricola pv. pruni, causal agent of bacterial spot disease of stone fruits and almonds, in Spain

${ }^{1}$ López-Soriano P, ${ }^{2}$ Boyer K, ${ }^{1}$ Morente MC, ${ }^{1}$ Peñalver J, ${ }^{2}$ Grygiel P, ${ }^{3}$ Palacio-Bielsa A, ${ }^{2}$ Vernière C, ${ }^{1}$ López MM, ${ }^{2}$ Pruvost 0.

${ }^{1}$ Centro de Protección Vegetal. Instituto Valenciano de Investigaciones Agrarias (IVIA). Moncada, Valencia
${ }^{2}$ UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT). Saint Pierre, La Réunion (Francia)
${ }^{3}$ Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA). Montañana, Zaragoza

Introduction

Xap is listed as a quarantine organism in the EU and the EPPO

In Spain, it was first detected in the province of Badajoz, in 2002 in Japanese plum

Introduction

Xap is listed as a quarantine organism in the EU and the EPPO

In Spain, it was first detected in the province of Badajoz, in 2002 in Japanese plum

Since then it has been detected in several Spanish provinces and different hosts, both in orchards and nurseries

- To assess the genetic diversity of 239 Spanish strains of Xap isolated from 2002 to 2013 in 12 provinces and 25 reference strains from international collections
- To establish the epidemiologic relationship between the Spanish strains
- To assess the genetic diversity of 239 Spanish strains of Xap isolated from 2002 to 2013 in 12 provinces and 25 reference strains from international collections
- To establish the epidemiologic relationship between the Spanish strains

Multilocus variable number of tandem repeats analysis (MLVA)

MLVA advantages

- Sensitive, rapid and reliable tool
- It shows a high discriminatory power among isolates
- Economic compared to other molecular typing tools
- Amenable to the handling of large samples sets
- Results can be standardized in datasets for comparison among different laboratories

Xap shows very low genetic diversity among isolates

- That was confirmed in several genetic diversity studies of Xap isolates using different methodologies
- FAFLP (Boudon et al., 2005)
- Integron gene cassette arrays and BOX-PCR (Barionovi \& Scortichini, 2008)
- Rep-PCR (Kawaguchi, 2012)
- ISSR-PCR (Kawaguchi, 2014)

Xap shows very low genetic diversity among isolates

- That was confirmed in several genetic diversity studies of Xap isolates using different methodologies
- FAFLP (Boudon et al., 2005)
- Integron gene cassette arrays and BOX-PCR (Barionovi \& Scortichini, 2008)
- Rep-PCR (Kawaguchi, 2012)
- ISSR-PCR (Kawaguchi, 2014)
- Higher resolution obtained with MLVA
- Genetic diversity study of Xap isolates of Prunus laurocerasus from the Netherlands (Bergsma-Vlami et al., 2012)
- Genetic diversity study of Xap isolates and other pathovars of X. arboricola (Cesbron et al., 2014)

MLVA

- It is based in the natural variation in the number of tandem repeated (TR) DNA sequences found in the microbial genome of most bacterial species

GGATAGTATTC AATCGG GATCGG AATCGG GATCGG CGA

Microsatellites: less than 10 nucleotids
Minisatellites: 10-60 nucleotids

- The number of TRs in a particular locus may differ between different strains

- The number of TRs in a particular locus may differ between different strains

- Because of this variation such loci are designated as variable number of tandem repeat (VNTR) loci
- The number of TRs in a particular locus may differ between different strains

- Because of this variation such loci are designated as variable number of tandem repeat (VNTR) loci

MLVA profile strain 1: 6-3-6-4-3-5-4-7
MLVA profile strain 2: 6-3-4-4-2-5-7-7

- The number of TRs in a particular locus may differ between different strains

- Because of this variation such loci are designated as variable number of tandem repeat (VNTR) loci

- The variation in the numbers of repeats in a set of VNTR loci is achieved by PCR

Primers target the conserved flanking regions of the tandem repeats

- PCR products are revealed by

Agarose gels

Capillary electrophoresis

CFBP 5530 sequence

27 VNTRs previously selected by Cesbron et al.

> Checked with a test panel of Xap strains

19 VNTR

CFBP 5530 sequence

27 VNTRs previously selected by Cesbron et al.

CFBP 3894 sequence

23 VNTRs were selected

Microsatellites			
TR 51I	TR 37I	TR 37II	TR 05-06
TR 40I	TR 36I	TR 03I	TR 68I
TR 30II	TR 28II	TR 38II	TR 58II
TR 33I	TR 58I	TR 67II	TR 79I
TR 50I	TR 66I	TR 15I	

Minisatellites
Xap 4790
Xap 0897
Xap 2280
Xap 2244
TR 10II

Multiplex-PCR

\checkmark VNTRs grouped according to their annealing temperature
\checkmark Primers labeled with fluorescent dyes (FAM, PET, NED, VIC)
\checkmark PCR of 264 strains

Multilocus variable number of tandem repeats analysis (MLVA)

Capillary electrophoresis

Electrophoregrams analysis

 (GeneMapper 4.0, Applied Biosystems)
Allelic profiles of 255 strains

Multilocus variable number of tandem repeats analysis (MLVA)

Capillary electrophoresis

Electrophoregrams analysis

 (GeneMapper 4.0, Applied Biosystems)
Allelic profiles of 255 strains

142 Haplotypes

Cepa	$\begin{array}{\|c\|c\|} \hline \text { TR5 } \\ 11 \end{array}$	$\begin{gathered} \text { TR3 } \\ 71 \end{gathered}$	TR0506	TR371	$\left\|\begin{array}{c} \mid T R 40 \\ 1 \end{array}\right\|$	TR3	$\begin{gathered} \hline \text { TR6 } \\ 81 \end{gathered}$	TRO3	$3 \text { TR30 }$	TR28	$\begin{array}{\|c} \text { TR58 } \end{array}$	$3 \text { TR38 }$	$\begin{gathered} \text { TR3 } \\ 31 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TR5 } \\ 81 \end{array}$	$; \begin{gathered} \hline \text { TR } \\ 91 \end{gathered}$	$\begin{gathered} \text { TR3 } \\ 911 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TR7 } \\ 61 \end{array}$	$\begin{array}{c\|} \hline \text { TR5 } \\ 01 \end{array}$	$\begin{array}{\|c\|} \hline \text { TR1 } \\ 51 \end{array}$	TR66	$5 \overline{T R 18}$	TR671	$\left\|\begin{array}{c} \mid x a p 47 \\ 90 \end{array}\right\|$	$7 \mathrm{Xap} 44$	$\begin{gathered} \text { Xap08 } \\ 97 \end{gathered}$	$\begin{aligned} & \text { Xap22 } \\ & 80 \end{aligned}$	Xap25 15
2626.1	5	4	16	9	8	5	9	7	8	4	11	8	6	7	7	20	6	5	7	10	8	14	4	3	3	13	6
2626.3	5	5	17	9	8	5	13	7	7	4	14	9	6	6	7	23	6	8	6	11	17	13	4	3	3	8	6
2835.4	5	5	19	9	8	5	13	7	7	4	14	9	6	6	7	17	6	7	6	10	16	12	4	3	3	8	6
3162.1	5	4	17	9	7	5	11	7	10	4	12	9	5	6	7	21	6	6	7	11	21	15	4	3	3	12	5
3604.10	6	5	16	9	8	5	14	7	7	4	15	10	5	6	7	23	6	7	6	10	16	19	4	3	3	8	6
3767.1	5	6	18	9	8	5	15	7	7	4	14	9	6	6	6	23	6	6	6	9	13	14	2	3	3	7	7
4330	5	5	20	9	8	5	13	7	7	4	14	9	6	6	7	17	6	8	6	9	13	12	4	3	3	8	5
CFBP5530	5	5	19	9	8	5	13	7	7	4	14	10	7	6	7	17	6	7	6	9	17	14	4	3	3	8	6
DAR41285	4	4	20	9	8	5	13	8	8	4	13	10	7	5	7	17	6	5	7	9	16	5	4	2	3	11	5

Multilocus variable number of tandem repeats analysis (MLVA)

Capillary electrophoresis

Electrophoregrams analysis

 (GeneMapper 4.0, Applied Biosystems)
Allelic profiles of 255 strains

142 Haplotypes

Cepa	$\begin{gathered} \hline \text { TR5 } \\ 1 I \end{gathered}$	$\begin{gathered} \text { TR3 } \\ 71 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TR05- } \\ 06 \end{array}$	$\begin{gathered} \text { TR371 } \\ 1 \end{gathered}$	$\left\|\begin{array}{c} \mid T R 40 \\ 1 \end{array}\right\|$	$\begin{gathered} \text { TR3 } \\ 61 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TR6 } \\ 81 \end{array}$	TR03	$\begin{gathered} 3 \text { TR30 } \\ \text { II } \end{gathered}$	$\begin{gathered} \text { TR28 } \\ \text { II } \end{gathered}$	$\begin{array}{\|c} \hline \text { TR58 } \\ \text { II } \end{array}$	$\begin{gathered} \hline \text { TR38 } \\ \hline 11 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { TR3 } \\ 31 \end{gathered}\right.$	$\begin{gathered} \hline \text { TR5 } \\ 8 \mathrm{I} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TR7 } \\ 91 \end{array}$	$\begin{array}{\|c\|} \hline \text { TR3 } \\ 911 \end{array}$	$\begin{array}{\|c\|} \hline \text { TR7 } \\ 61 \end{array}$	$\begin{array}{c\|} \hline \text { TR5 } \\ 01 \end{array}$	$\begin{array}{\|c\|} \hline \text { TR1 } \\ 51 \end{array}$	TR66	5	$\begin{gathered} \text { TR671 } \\ 1 \end{gathered}$	$\left\|\begin{array}{c} \text { Xap47 } \\ 90 \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { Xap44 } \\ 22 \end{array}$	$\begin{array}{\|c} \text { Xap08 } \\ 97 \end{array}$	$\begin{gathered} \hline \text { Xap22 } \\ 80 \end{gathered}$	$\begin{gathered} \hline \text { Xap25 } \\ 15 \end{gathered}$
2626.1	5	4	16	9	8	5	9	7	8	4	11	8	6	7	7	20	6	5	7	10	8	14	4	3	3	13	6
2626.3	5	5	17	9	8	5	13	7	7	4	14	9	6	6	7	23	6	8	6	11	17	13	4	3	3	8	6
2835.4	5	5	19	9	8	5	13	7	7	4	14	9	6	6	7	17	6	7	6	10	16	12	4	3	3	8	6
3162.1	5	4	17	9	7	5	11	7	10	4	12	9	5	6	7	21	6	6	7	11	21	15	4	3	3	12	5
3604.10	6	5	16	9	8	5	14	7	7	4	15	10	5	6	7	23	6	7	6	10	16	19	4	3	3	8	6
3767.1	5	6	18	9	8	5	15	7	7	4	14	9	6	6	6	23	6	6	6	9	13	14	2	3	3	7	7
4330	5	5	20	9	8	5	13	7	7	4	14	9	6	6	7	17	6	8	6	9	13	12	4	3	3	8	5
CFBP5530	5	5	19	9	8	5	13	7	7	4	14	10	7	6	7	17	6	7	6	9	17	14	4	3	3	8	6
DAR41285	4	4	20	9	8	5	13	8	8	4	13	10	7	5	7	17	6	5	7	9	16	5	4	2	3	11	5

Minimum Spanning Tree (MST) of Spanish strains

Alicante
- Badajoz
- Huelva
Huesca
Lleida
- Mallorca
Navarra
Pontevedra
- Tarragona
- Teruel
- Valencia
Zaragoza

Restriction of 4 TR

 loci variation- Alicante
- Badajoz
- Huelva
- Huesca
- Lleida
- Mallorca
- Navarra
- Pontevedra
- Tarragona
- Teruel
- Valencia
- Zaragoza

18 genetic clusters

Multiple introductions

Nurseries play an important role in the introduction

Nurseries play an important role in the introduction

- Alicante
- Badajoz
- Huelva
- Huesca
- Lleida
- Mallorca
- Navarra
- Pontevedra
- Tarragona
- Teruel
- Valencia
- Zaragoza

Strains showing very different allelic profiles were isolated in the same nursery and the same year

Nurseries play an important role in the introduction

- Alicante
- Badajoz
- Huelva
- Huesca
- Lleida
- Mallorca
- Navarra
- Pontevedra
- Tarragona
- Teruel
- Valencia
- Zaragoza

Strains isolated in other nurseries presented allelic profiles very different to the rest of strains

Nurseries play an important role in the introduction

- Alicante
- Badajoz
- Huelva
- Huesca
- Lleida
- Mallorca
- Navarra
- Pontevedra
- Tarragona
- Teruel
- Valencia
- Zaragoza

4 strains isolated in a Spanish nursery but in plants produced in Italy

Dissemination of Xap through the Spanish nurseries

Genetic cluster: haplotypes less than 4 loci variants
Related strains
Almost 50\% of total collection was grouped here

Dissemination of Xap through the Spanish nurseries

```
Alicante
- Badajoz
- Huelva
- Huesca
- Lleida
- Mallorca
Navarra
- Pontevedra
- Tarragona
- Teruel
- Valencia
- Zaragoza
```


Genetic cluster: haplotypes less than 4 loci variants
Related strains
Almost 50\% of total collection was grouped here

Clonal complex: haplotypes single locus variants

Closely related strains

Dissemination of Xap through the Spanish nurseries

Dissemination of Xap through the Spanish nurseries

Strains from 4 provinces, including 2 nurseries from 2 different provinces

Exchange of contaminated plant material between nurseries

Dissemination of Xap through the Spanish nurseries

Strains from 4 provinces, including 2 nurseries from 2 different provinces】

Exchange of contaminated plant material between nurseries

Transmission from nurseries to orchards
 different provinces

Conclusiones

$>$ Multilocus Variable Number of Tandem Repeats Analysis is an efficient tool to assess the genetic diversity of Xap strains
$>$ Our MLVA scheme allowed us to identify 142 haplotypes in a collection of 264 strains
$>$ Results obtained reveal multiple introductions of Xap in Spain especially by trade of contaminated plant material from foreign nurseries
$>$ MLVA scheme confirms dissemination of the pathogen through Spanish nurseries

AGRICULTURAL RESEARCH FOR DEVELOPMENT

Thank you for your attention

