

Investigate, evaluate, protect

Assessment of performance criteria of '*Candidatus* Liberibacter solanacearum' detection methods

Loiseau M., Cousseau-Suhard P., Renaudin I., Lucas P.-M., Gentit P. - ANSES-LSV, 7 rue Jean Dixméras, 49044 Angers cedex 01 - France

Ca. L. solanacearum: « Zebra chip » diseases

Haplotypes A and B: Ca. L. solanacearum on Solanaceae

- <u>Regulations</u>: list A1 of EPPO In France, survey of potatoes import
- Geographical distribution: North and Central America, New Zealand
- Vector: Bactericera cockerelli (absent from European territory)
- Transmission by potato tubers
- Symptoms on potatoes:

Source : Crosslin et al., 2010

- <u>Economic impact:</u> up to 80% loss, marketing pb, export pb, quality of seeds and tubers degraded...

December 2015

Ca. L. solanacearum: vegetative disorders on Apiaceae

Haplotypes C, D and E : Ca. L. solanacearum on Apiaceae

- Regulations: unregulated

- <u>Geographical distribution</u>: Europe (Finland, Norway, Sweden, Spain, France and Germany) and Morocco

- Vectors: Trioza apicalis, Bactericera trigonica
- Symptoms:

Source : ANSES-LSV, 2014

 Economic impact: still difficult to assess, little or no seed production, export pb, marketing difficulties of roots...

Evaluated methods

- DNA extraction methods:
 - CTAB 3%
 - Dneasy plant mini kit (Qiagen®)
 - QuickPick[™] SML Plant DNA (Bio-Nobile[®])
- DNA Amplification methods:
 - End point PCR: Ravindran *et al.*, 2011 with primers targeting 16S-23S ITS;
 - Real-time PCR: Li *et al.*, 2009 and Teresani *et al.*, 2014, both targeting 16S rDNA

Previous results

Based on literature

Method	Inclusivity (give a positive result with the method)	Specificity (give a negative result with the method)	Analytical sensitivity
Li <i>et al</i> ., 2009	 16 <i>Ca.</i> L. solanacearum from potato 2 <i>Ca.</i> L. solanacearum from tomato 	3 <i>Ca.</i> L. asiaticus 3 <i>Ca.</i> L. africanus 3 <i>Ca.</i> L. americanus Potato leaf roll virus Clover proliferation phytoplasma <i>Ca.</i> P. americanum <i>Xylella fastidiosa</i> PD strain <i>Xyllela fastidiosa</i> CVC strain	100 fold more sensitive than end point PCR of Liefting <i>et al.</i> , 2008
Ravindran <i>et al.</i> , 2011	9 isolats of <i>Ca.</i> L. solanacearum from potato	1 <i>Ca.</i> L. asiaticus 1 potato	40 fold more sensitive than end point PCR of Liefting <i>et al.</i> , 2008
Teresani <i>et al.</i> , 2014	3 <i>Ca.</i> L. solanacearum from celery 2 <i>Ca.</i> L. solanacearum from psyllids 4 <i>Ca.</i> L. solanacearum from carots	 13 <i>Ca.</i> L. asiaticus 2 <i>Ca.</i> L. africanus 2 <i>Ca.</i> L. americanus 16 strains of bacterial species 81 unidentified bacterial 	The same as Li <i>et</i> <i>al</i> ., 2009

Evaluation of DNA extraction methods

- samples:
 - 2 samples of leaves from infected carrots diluted in healthy carrot leaves;
 - 2 infected carrot seeds samples diluted in PBS buffer;
 - 2 infected samples from apiaceous diluted in PBS buffer.
- 10 fold dilution series to pur sample from 10⁻³; 2 repetitions.
- Evaluation of analytical sensitivity

Evaluation of DNA amplification methods

• 15 target samples, 2 repetitions

Bacterial strains or healthy plant (-)	Sample type	origine	
	Carrot seeds	France	
	Carrot leaves	France	
	Celery leaves	France	
	B. trigonica	France	
	B. trigonica	Canary Islands	
	Carrot leaves	Canary Islands	
Ca I solanacearum	Celery leaves	Austria	
	Carrot leaves	Austria	
	Carrot seeds	-	
	B. cockerelli	NZ	
	Tomato	NZ	
	Potato leaves	NZ	
	Solanaceous	-	
	Apiaceous	-	
	Carrot seeds	France	

Evaluation of DNA amplification methods

• 15 non target samples, 2 repetitions

Bacterial strains or healthy plant (-)	Sample type	origine
Ca. L. europaeus	Pear	Italy
l crescens	Carica x heilbornii	USA, Puerto Rico
	var. pentagona	DSMZ 26877
<i>Ca.</i> L. asiaticus	Citrus	LSV-RAPT
Ca. L. africanus	Citrus	LSV-RAPT
S. citri	Citrus	LSV-SQ
-	Carrot seeds	-
-	Carrot leaves	France
-	Celery leaves	France
-	Tomato leaves	France
-	Potato leaves	France
-	Apiaceous	France
-	Celery	France
Ca. Phytoplasma asteris	Oinion	France
<i>Ca.</i> Phytoplasma solani	Tomato	France
-	Solanaceous	France

Ref.: EPPO PM 7/98, ANSES Guide NB1/V09

- » Analytical specificity: diagnostic sensitivity and diagnostic specificity
- » Analytical sensitivity
- » Repeatability

Results : DNA extraction methods

Sample		СТАВ		DNeasy kit		QuickPick kit		
Type of samples comtaminated by LSO	Level of dilution	Use to dilute	Rep 1	Rep 2	Rep 1	Rep 2	Rep 1	Rep 2
	pur		+	+	+	+	+	+
	10 ⁻¹		+	+	+	+	-	+
	10 ⁻²		+	+	+	+	-	-
Carret leaves	10 ⁻³		+	+	+	+	-	+
Carrol leaves	pur	Carrot leaves	+	+	+	+	+	+
	10 ⁻¹		+	+	+	+	-	+
	10 ⁻²		+	+	+	+	-	-
	10 ⁻³		+	+	+	+	-	+
	pur		(+)	+	+	+	+	+
	10 ⁻¹	PBS	+	+	+	+	+	+
	10 ⁻²		-	+	+	+	+	+
Carrat coode	10 ⁻³		-	-	-	+	+	+
Carrol Seeus	pur		(+)	+	+	+	+	+
	10 ⁻¹		+	+	+	+	+	+
	10 ⁻²		-	+	+	+	+	+
	10 ⁻³		-	-	-	+	+	-
	pur		+	+	+	+	+	+
Colony	10 ⁻¹		+	-	+	+	+	+
Celei y	10 ⁻²	PBS	-	-	-	-	+	-
	10 ⁻³		-	-	-	-	-	-
	pur		+	+	+	+	+	+
Aniaceous	10 ⁻¹		+	+	+	+	+	+
Aplaceous	10 ⁻²	PBS	-	+	+	+	+	+
	10 ⁻³		-	-	-	+	+	+

anses

Results : DNA extraction methods

Sample contaminate	CTAB	Dneasy	QuickPick		
	Carrot	10-3	10-3	DUIT	
	leaves	10 -	10 *	pui	
Analytical sensitivity	Carrot	10-1	10-2	10-2	
Analytical Sensitivity	seeds	10	10-	10	
	Celery	pur	10 ⁻¹	1 0 ⁻¹	
	Apiaceous	10-1	10 ⁻²	till 10 ⁻³	

→ After dilution of the pur DNA extracts in DNase free (10^{-1}), QuickPick is as sensitive as the other methods.

Results : DNA amplification methods

Method	Li <i>et al</i> ., 2009	Teresani <i>et al</i> ., 2014	Ravindran <i>et al</i> ., 2011
			(ITS 16S-23S)
NA	30	30	30
PA	30	24	20
ND	0	6	10
PD	0	0	0

	NA	ΡΑ	ND	PD
Expected result	-	+	+	-
Obtained result	-	+	-	+

December 2015

anses

Results : DNA amplification methods

Type of sample contaminated by LSO	Dilution	Use to dilute	Li et al., 2009*	Teresani et al., 2014*	Ravindran et al., 2011*
	pur		6/6	6/6**	6/6
DNIA of correct	10 ⁻¹	« Healthy » DNA of carrot seeds	6/6	6/6	6/6
	10 ⁻²		6/6	6/6	6/6
Seeds	10 ⁻³		6/6	5/6	1/6
	10-4		3/6	3/6	0/6
	pur		6/6	6/6	6/6
DNIA of correct	10 ⁻¹	« Healthy » DNA of carrot leaves	6/6	6/6	6/6
leaves	10 ⁻²		6/6	6/6	6/6
	10 ⁻³		6/6	6/6	6/6
	10-4		6/6	5/6	3/6

*: nb of positive results/nb of repetitions **: obtained after a 10 fold dilution.

ans

Results : DNA amplification methods

Method	Li e <i>t al</i> ., 2009	Teresani <i>et al</i> ., 2014	Ravindran <i>et al</i> ., 2011
Diagnostic sensitivity	100%	80%	67%
Diagnostic specificity	100%	100%	100%
Analytical specificity	100%	90%	83%
Analytical sensitivity (seeds)	10 ⁻³	10 ⁻²	10 ⁻²
Analytical sensivity (leaves)	Till 10 ⁻⁴	10 ⁻³	10 ⁻³
Repeatability	97%	97%	95%

anse

Conclusion

- DNA extraction methods:
 - Kits tested for DNA extraction are reliable.
 - Carefull : problems of inhibition !!
- DNA amplification methods:
 - Teresani *et al.*, 2014 and Ravindran *et al.*, 2011 need to be improved in order to increase sensitivity;
 - Li *et al.*, 2009 seems to be the method of choice to detect *Candidatus* Liberibacter solanacearum in our conditions.

Discussion

- Automatized extraction method should be tested in order to test large number of samples.
- Optimization of amplification methods targeting different parts of the genome in order to confirm results on 16S rDNA.
- A interlaboratory study is necessary to complete assessment datas.
- Multiplex real-time PCR targeting phytoplasmas, Ca. L. solanacearum and plant control will be assessed.

Thank you

For providing samples:

- Felipe Siverio (Sanidad Vegetal, Tenerife, Spain)
- Sarah Thompson (The New Zealand institute for plant and food research, NZ)
- Richard Gottsberger (Austrian Agency for Health and Food Safety-AGES, Austria)
- Elena Gonella and Alberto Alma (DISAFA-University of Turin, Italy)
- Gilles Cellier (ANSES LSV-RAPT, France)
- Jean-Philippe Renvoise and Grégory Calado (ANSES LSV-UQ, France)

For production of results:

- Technicians colleagues in ANSES LSV UBVO : Pascaline Cousseau-Suhard and Isabelle Renaudin
- Student: Pierre-Marie Lucas

And thank you all for your attention....

